路線別特性評価に基づくバス路線網再編手法の提案

溝上彰志1・柿本竜治2・橋本淳也3

1正会員 工博 熊本大学教授 工学部環境システム工学科（〒860-8555 熊本市黒髪2-39-1）
E-mail: smizo@gpo.kumamoto-u.ac.jp
2正会員 博(学) 熊本大学助教授 工学部環境システム工学科（〒860-8555 熊本市黒髪2-39-1）
3正会員 博(工) 八代工業高等専門学校助教授（〒866-8501 熊本県八代市平山新町 2627）

本研究は、バス輸送の持つ平均的生産性構造と実績費用を比較することによる当該路線の生産効率性、および路線沿線の潜在需要と実際に獲得した乗車需要との比較による潜在需要の観客性可能性という2つの視点から、バス路線別の特性評価を行う方法を提案したものである。さらに、この特性評価法による路線の分類、および分類された路線を改善する合理的なシステムインナショナルな路線再編方策を示す。熊本都市圏を対象として汎用交通需要予測パッケージの一つである JICA STRADA を利用し、この路線分類別の改善方策にしたがってバス路線網の再編を試み、再編バス路線網に対して交通需要予測を行った後の路線別、および路線網全体の乗車需要や乗客数に関する交通分析を行い、本手法の実用可能性と有用性を検証した。

Key Words: bus route reorganization, transit latent demand, transit production effectiveness

1. はじめに

（1）バス事業に関する最近の情勢

乗合バスは地域の日常生活を支える公共交通サービスの役割を担ってきた。都市部では、自動車の代替手段として、交通混雑の解消やNOxなどの環境改善に貢献しているだけでなく、若年層や高齢者などの交通弱者に対する移動手段としてもその役割は極めて重要である。地方部では、地域住民のモビリティを保証する唯一の公共交通機関でもある。しかし、乗車の利便性の向上や、より利便性の高い新たな公共交通手段の導入により、全国の都市でバス利用需要の減少が深刻になっている。一方で、従来、公共性の高いバス事業は、サービス規模の維持の必要性から「免許制」による事業数の調整（ Whisper 規制）が実施されていた。また、運賃は認可制度であり、その基準は、能率的経営の下における適正な原価を償いつつ適正な利潤を含むものであること（道路運送法第9条）という総括原価に基づく運賃であった。

このような中、平成14年2月には生活路線の維持方策の確立を前提にして、補助調整規制が撤廃された。これによって、従来の認可制から、輸送の安全の確保と安定的なサービス提供、および利用者保護に関する一定以上の能力などの要件を満たすものには、乗合バス事業への新規参入・退出を認める許可制になった。運賃制度についても、運輸政策審議会での答申に基づいて上限価格制の措置がなされるようになっている。これによって、路線への新規参入を容易にして事業の自由競争を促すこと、バス輸送は路線沿線のニーズに応じた高サービス・低料金のシステムへ改善されることが期待される。その反面、需要の多い都市部では供給過剰による混乱が生じるか、不採算路線からの撤退が急増してその沿線住民の日常生活に必要なモビリティの維持が困難になるなどの懸念もある。

平成13年4月からは、生活交通確保のための新しい補助制度が開始された。従来の補助対象が内部補助を前提とした事業者であったものを、新補助制度では黒字・赤字事業者を問わず生活交通確保のため地域にとって必要な赤字路線とするようになったのが特徴である。上記の規制緩和に加えてこの補助制度の改正により、バス事業全体ではなく、個別路線の特性把握や経営効率性の評価が今まで以上に厳し
く求められるようになったといえる。

（2）従来の路線別評価・計画手法と本研究の目的
従来の伝統的なバス路線サービスの評価・計画手法
は、その数学的取り扱いや解法に幾つかのバリエーションはあるものの、基本的には総走行
時間などのシステム効率性指標を最適化するような
路線網を運行頻度を決定する数理最適化手法が用い
られている。これらの研究では、バス路線網設定問
題を設定可能リンク上で路線を敷設するか否かを
0-1変数とする整数計画法によって定式化し、その解
法として分枝限定法や GA による近似解法を提案す
るなど、問題の定式化や解法の開発に研究の目的が
あったといえる。その中には、個別路線の特性を詳
しく分析、評価しようという視点はあまりない。ま
た、システム効率化の結果は、現実でない経路網
やサービス水準となることもあるなど、実際の都市
圏では計算可能性や適用可能性に課題がある。さら
に、利用者需要は固定であるのが一般的であり、路
線網再編後のバス分担需要の変動は考慮されていな
い。また、このような数理的手法では、都市輸送に
幹線サービスを導入すると同時に主要ターミナルか
らは面的なフィーダーサービスを徹底するなど、そ
の都市圏総合交通体系における公共交通サービスの
基本戦略を考えることは容易ではなかった。

これに対して、路線ごとの補助の妥当性を検討す
るためにあたり、路線ポテンシャルという指標を用いて、
名古屋市営バス路線を競争的で経営可能な企業路線
と市民のモビリティ確保のための循環型公共交通路
線とに分類した竹内らの研究4) は先駆的である。路
線ポテンシャルとは、経営効率性の主要な指標であ
る経費係数（＝収入/経費）を（収入/旅客キロ）・（旅
客キロ/営業所要））・（営業所要/乗務人員）・（乗務時間/乗務人員）に分類したとき、路線ごとに固有と見なすことができる（営業
所要/乗務人員）を示す指標である。これにより、
ひとたび路線が設置された後は当該路線の潜在的集
客能力を示すので、路線の数を評価する指標と
して有用である。しかし、補助対象路線や路線別補助
額を現況の収支額をもとに決定している点は路
線ポテンシャルによる路線特性評価法とは整合しない。
なぜなら、支収額は既存化した需要からの収入とサ
ービス提供に必要な経費の差であり、その絶対額で
は投入や産出が効率的になされているかという生産
性の程度と潜在需要量発掘のための営業努力の程度
を分離することができないからである。また、収
支額の実績値は営業の結果として得られた指標と
しては適切でない。

GIS を用いたバス路線網計画支援システムを構築
して路線ポテンシャルと限定依存人口をシステムティ
ックに計測し、その結果をバス路線網代替案作成
に活用しようとする試みは杉尾ら3)、6) によってもな
されている。この研究では、路線ポテンシャルを企
業経営、限定依存人口を公共性を表す指標とし、
両者の視点から個々の路線を評価、分類している。
しかし、限定依存人口の定義は当該路線の廃止に
よって公共輸送サービスを享受できなくなる人口であ
るから、その値は人口密集地域に限定された路線で
大きな値を出す場合もあるため、果たして人口低密
地域におけるモビリティ準水準を示す公共性指標
として合理的であるかは疑問である。この研究では、
路線特性による分類結果を個々の路線の改善策に用
いるという概念を示している点で有益であるが、実
際には路線再編やサービス改善計画に適用されては
いない。

本研究では、各路線が本質的に持つ素質によって
路線を評価・分類し、その結果を路線網代替案作成
の基礎資料にするという竹内らや杉尾らの考え方を
踏襲するが、営業係数を構成する生産効率性と潜在
需要の顕在化可能性という 2 つの視点から個々の現
況バス路線の路線特性を評価・分類する方法、およ
びその特性に即した改善策を個別路線に実施すること
によって路線再編を行う合理的なバス路線網代替案
提示手法を示す。2) ではバス輸送の持つ平均的生
産性構造と実績費用とを比較することによる当該
路線の生産効率性、および路線沿線の潜在需要と実
際的に獲得した乗車人員との比較による潜在需要の顕
在化可能性という 2 つの視点から路線別特性評価
を行う方法を提案する。3) では、この路線別特性
評価法による路線分類、および分類された路線を改善
する合理的でシステムティックな路線再編方策を
示す。4) では汎用交通需要予測パッケージの一つ
である JICA STRADA を利用し、この路線分類別の
改善方策にしたがって熊本都市圏バス路線網の再編
を試みる。さらに、5) では、再編バス路線網に対
して交通需要予測を行った後の路線別、および路線
網全体の乗車人員や営業係数などにについての効果分
析を行い、本手法の実用可能性と有用性を検証する。
最後に、6) では本手法を実用化するに当たっての
課題を明らかにする。

従来の両方の研究と比較して本研究が持つ有用性
は以下の点である。
1）バス路線ごとの営業状況を、費用と収入の両方
に対する素質の達成度によって評価している。
2）路線別に経営改善の方策を示すことができる。
3）路線別特性評価と改善策に基づいて実際の都市圏バス路線網の再編を行い、その効果を分析するまで実用可能なシステムにしている。

路線別特性評価と路線再編計画の対象は熊本都市圏のバス路線網であり、熊本市交通局、およびKA、KB、KC社という3つの民間バス企業による約400系統で構成されている。需給調整規制の撤廃後も際だった路線の新規参入・退出や料金の改訂はないが、需要の少ない路線の廃止や運行頻度の削減などは進行している。また、上記の4バス輸送事業者の総料金収入の約40％を占める大手民間バス企業が実質的な債務超過に陥っており、今後、産業再生機構の支援を得て再建するために大幅な路線再編が実施されると思われる。

ここで、路線は通常ルートや停車バスの一部が異なるだけでほぼ同一と見なせる1つ、または数つかの系統を統合したものである。以下では系統と区別して用いる。

2．路線再編のための路線別特性評価の方法

（1）路線別特性評価指標

従来、路線ごとの特性評価指標としては営業係数や輸送密度が用いられてきた。しかし、これらの評価指標は競争の結果として得られる指標であるから、当該路線の特性を潜在的な質を評価している訳ではない。したがって、営業係数が1.0を超えていたとしても、それが収入に対して過大な経費を要しているために生じているのか、または経費に対して収入が少なくいために生じているのかの判断ができない。そこで、本研究では図1に示すように、

1)バス輸送システムの平均的生産性と比較して当該路線の生産性水準をどの程度であるかという生産効率性

2)当該路線のにつ潜在需要をどれだけ実需要として顕在化させているかという潜在需要の顕在化可能性という2つの視点から路線別特性の評価を行う。

生産効率性の視点の評価方法は以下の通りである。まず、経年データを用いて分析理論と整合的な費用関数を推定し、バス輸送企業が標準的に行っている生産活動を特定する。この費用関数に基づく各路線別の説明変数データを代入することによって、当該路線の標準的な費用を推定する。この標準的費用と実際費用を比較することによって当該路線の生産効率性の程度を評価するというものである。

一方、潜在需要の顕在化可能性の視点からの評価方法は下記の通りである。各路線の持潜在客能力を表す路線ポテンシャルを後述の方法で推計する。この推計値と乗車人員の実績値を比較することにより、潜在需要の顕在化可能性の程度を評価する。

（2）費用関数を用いた路線別生産効率性指標

a）トランスポン型費用関数

企業の生産構造を分析するために、生産関数の双対関数であり、生産理論と整合的な費用関数を分析するという手法が開発されてきた。特に、公益事業の分野で、トランスポン型費用関数を用いることによつて規模の経済性などの生産構造を直接的に推定するという試みがなされている。

トランスポン型費用関数は、生産要素価格の（i = 1, 2, ..., n）と産出量Qiの関数であり、前もって関数形を特定化することなく、生産構造特性を特定するパラメータ値や各種生産構造指標により検証できるという利点がある。一般形は費用関数の2次のテーラー展開によって得られ、次式のように表される。

\[\ln C = \alpha_0 + \sum{i} \alpha_i \ln Q_i + \sum{i} \beta_i \ln P_i + \sum{i} \delta_i \ln \ln Q_i + \sum{i} \gamma_i \ln \ln P_i + \sum{i} \rho_i \ln \ln Q_i + \ln \ln P_i \] (1)

各バス輸送企業の費用関数を推定する際の説明変数には、産出物Qを乗車人員Jと走行キロSを、投入要素価格のPJとして運行費の構成比率の上位から、労働費W（人間）と、事業費R（車両修繕費と燃料費F）を使用した。このとき、駆出量を投入要素価格それぞれについての対称性、および総費用の投入要素価格に対する1次同次条件を考慮すると、最終的に費用関数は以下のようになる。

\[\ln C = \ln F = \alpha_0 + \alpha_1 \ln J + \alpha_2 \ln L + \alpha_3 \ln S + \beta_1 \ln W + \ln (W - \ln F) + \beta_2 \ln R + \ln (R - \ln F) + \delta_{ij} \ln (J)^2 + \delta_{ij} \ln J \ln S + \delta_{ij} (\ln S)^2 + \frac{1}{2} + \gamma_{ij} \ln (W - \ln F)^2 + \frac{1}{2} + \gamma_{ij} \ln (W - \ln F)(\ln (R - \ln F)) + \rho_{ij} \ln (W - \ln F) \ln J + \rho_{ij} \ln (R - \ln F) \ln J \] (2)
一方、総費用に対する労働と工事と燃料の費用シェア関数は、それぞれ次式で表される。

\[S_w = \beta_w + \gamma_{w} (ln W - ln F) + \gamma_{w} (ln R - ln F) + \rho_{w} ln J + \rho_{w} ln S \]

\[S_r = \beta_r + \gamma_{r} (ln W - ln F) + \gamma_{r} (ln R - ln F) + \rho_{r} ln J + \rho_{r} ln S \]

\[S_f = \beta_f + \gamma_{f} (ln W - ln F) + \gamma_{f} (ln R - ln F) + \rho_{f} ln J + \rho_{f} ln S \]

費用シェアの和は 1.0 という制約による冗長性をなくすために、パラメータ推定の際は、費用関数式 (2)と燃料に関するシェア関数 (5)を除いた費用シェア式 (3)，(4)を用いた。また、これら複数の方程式体の回帰モデルを同定推定するために、3段階最小 2 偏法を用いた、トランスログ型費用関数の特性については付録 1 参考文献 7 に参照された。

b) 推定結果とその考察

費用関数を推定するためのデータは企業ごとの平成 5 年から平成 13 年の時系列データであり、投入要素価格と総費用については H12 年を 100 としたデフレータで除して H12 年価格で基準化している。産出量には年間の乗車人員と走行距離のデータを用いて、路線別のクラスセクションデータではなく企業全体の時系列データを用いている。バス輸送企業ごとの平均的な費用構造を示す長期費用関数を推定するのが目的であるからである。データの詳細については付録 2 参照されたい。各社ごとの費用関数の推定結果を表 - 2 に示す。各社ともに説明変数のパラメータの 1 値はおおむね高く、残差平方和も小さいで、統計的な回帰式の当てはまりをも良いといえる。DW 比はいずれも 2.0 に近い値を示しており、残差系列にみられる規則性はないといえる。

次に、各パラメータに関する簡単な検討を行う。産出量に対するパラメータ \(a_f, a_r \) を見てみると、市交通局では、乗車人員の増加に伴って総費用は増加するという構造となっている。民営企業の KA 社と KB 社では、乗車人員が減少し、走行台数が増加するほど総費用が増加するのに対して、KC 社はこれとは逆の構造となっている。ただし、式(2)からも分かるように、これらの変数は単独で総費用に影響するのではなく、その他の変数との組み合わせで影響を及ぼす。次に、投入要素価格に対するパラメータ \(\beta_w, \beta_r, \beta_f \) について見てみると、各社ともにそれぞれの投入要素価格を増加させるとコストも増加するという構造になっている。このように、運用主体ごとに異なる生産構造を持っており、特に営業の場合はその構造がかなり異なることが分かる。これらの生産構造特性についての詳細な分析は他に譲る。

（3）路線ボテンシャルを用いた路線別潜在需要の顕在化可能性指標

路線ボテンシャルとは需要に対する各路線の素質とでもいうべきもので、各バス停の沿線に居住、あるいは従業している人口などに依存して当該バス路線が獲得可能な潜在需要を表す。ここで言う潜在需要とは、当該路線の沿線から発生する可能性のあるトリップ数の最大値ではなく、路線の設定ルートやその延長、路線上のバス停の位置とその数などの物理的・地理的要因などが決まる。当該路線の沿線から獲得可能な標準的なバス利用可能である。ここでは竹内らの方法を参考にして、自宅ベースの居住人口に基づく住居地系ボテンシャルに加えて、非自宅ベースの各産業従業者数に基づく業務地系ボテンシャルを計上しその合わせて路線ボテンシャルとする。ここでは、路線ボテンシャルを簡便に推計することを目的として、各種ボテンシャルの重みは全て 1.0 とした。したがって、本研究の路線ボテンシャルは、重み係数そのものを試行錯誤的に設定する竹内らの定義とは異なっている。このようにして推計された路線ボテンシャル値は、ルート上のゾーンの交通発生強度と公共輸送選択性向によって平均化されるため、適切な値の重み係数を用いた場合と大きな差が生じることは無いと考えられる。

路線ボテンシャルの計測は、図 - 2 に示すように 4 つの段階を経て行われる。
1) バス停力圏内の交通発生力の算出を行う。バス停力圏とはバスを中心とした半径 500mの円を基本としており、住居地系ポテンシャルの他に非自宅ベースのポテンシャルも考慮する。
2) バス停力圏内交通発生力に、交通発生強度を表す平均交通発生頻度と公共輸送選択比率を表現するバス分担率を乗じてバス停ポテンシャルを算出する。
3) 任意の系統の通過するバス停ポテンシャルの総和を重複数で除して系統ポテンシャルの算出を行う。
4) 各路線に含まれる系統の系統ポテンシャルをその系統の運行頻度で重み付き平均した値を各系統の延長を路線について運行頻度で重み付き平均した値で除して、単位距離当たりの路線ポテンシャルを算出する。

3. バス路線別特性評価と路線網再編の考え方

（1）系統別生産効率性評価
費用関数は時系列データを用いて推定されているので、各系統の長期費用関数をとる。この関数に路線網再編年度の路線別の費用変数データを代入することにより、当該路線にかかる総費用の推定価を推計することができる。このとき、投入基準価格について全ての路線に対してH12年基準価格を用いれば良い。一方、生産出の路線別データ値は推定時の値域にかかわり予測の結果を示すものでそのまま代入できない。そこで、予め事業者ごとに通運行キロと乗車人員に対する各路線の両者の比（拡大率）の間の回帰式を求め、各路線の通運行キロをその年の通運行距離に等しくするように拡大する。同時に、乗車人員についても回帰式から推計される拡大率で拡大した値を代入した。
この推計値と路線ごとの総費用の業務実績値を比較することにより、当該路線の生産効率性を推計する。推計値は回帰推定値であるがら、実績値との差の有無は、将来、統計的に検定されるべきであるが、ここでは両者の値を単純に大小比較する。ここでは、H12年度の市交通局76路線、KA社84系路線、KB社47路線、KC社21路線、合計288路線に対し生産効率性の推計を行った。各系統ごとの路線の業務実績費用及び推計費用の比較、および収支についての関係を表1に示す。全体では推計費用よりも高コスト構造である路線（生産効率性が低い）が113、低コスト構造である路線（生産効率性が高い）が127であった。民間企業ではコストで運営されている路線が多いこと、市交通局では黒字であっても高コスト構造である路線が多いことも明らか。

表1 生産効率性の評価結果

<table>
<thead>
<tr>
<th>生産性</th>
<th>市交通局</th>
<th>KA社</th>
<th>KB社</th>
<th>KC社</th>
</tr>
</thead>
<tbody>
<tr>
<td>基準</td>
<td>高</td>
<td>低</td>
<td>高</td>
<td>低</td>
</tr>
<tr>
<td>黒字路線</td>
<td>12</td>
<td>16</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>赤字路線</td>
<td>11</td>
<td>37</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>計</td>
<td>23</td>
<td>53</td>
<td>61</td>
<td>23</td>
</tr>
</tbody>
</table>

注）KC社については営業状況データが入手できなかった

表2 生産効率性的判別要因

<table>
<thead>
<tr>
<th>説明変数</th>
<th>判別係数</th>
<th>F値</th>
</tr>
</thead>
<tbody>
<tr>
<td>路線長（km）</td>
<td>-0.091</td>
<td>15.1</td>
</tr>
<tr>
<td>運行回数（本/日）</td>
<td>0.034</td>
<td>5.4</td>
</tr>
<tr>
<td>重複数</td>
<td>0.081</td>
<td>11.9</td>
</tr>
<tr>
<td>単位距離当たりバス停数</td>
<td>0.250</td>
<td>3.9</td>
</tr>
<tr>
<td>バスセンターバス停数</td>
<td>0.137</td>
<td>1.4</td>
</tr>
<tr>
<td>定数項</td>
<td>0.660</td>
<td></td>
</tr>
<tr>
<td>的中率（％）</td>
<td>73.6</td>
<td></td>
</tr>
</tbody>
</table>

（2）路線別潜在需要の観在化可能性評価
丁目別人口は100人を一つの点として当該区画内にランダムに分散配置させ、それらの点をデジタル座標化した人口ドットマップ用いて、バス停周り500mの居住人口、および産業別従業者数を算出する。学校在籍生徒数、病院病床数、その他公共施設利用者数は地図上の所在地をもとに、各バス停の施設圏人口算出のためのデータとする。交通発生強度と公共輸送選択比率については、第3回熊本市圏パーソントリップ調査 Cゾーンごとの発生原単位の平均2.57（トリップ/人）とバス分担率の平均0.0675とした。各系統、系統の乗車人員、走行距離は年間のデータであるから、運行頻度なども年間の値に補正して使用している。
上記228路線を対象として、算出した単位距離あたりの路線ポテンシャル値と単位距離あたり乗車人
員の実績値との比較を図−3に示す。両者の値の大小がそのまま潜在需要の顕在化可能性の有無を表しているわけではないが、図中の直線に対して上方にあるものは相対的に潜在需要を効率的に顕在化しており、下方にあるものは顕在化してない路線を示すことになる。路線ポテンシャルが実績乗車人員よりも低い路線が116、高い路線が112であった。

路線単位距離あたり乗車人員と比較して潜在需要を顕在化できているか否かは、主として当該路線の提供しているサービス水準や競合路線の存在に依存すると考えられる。そこで、路線別距離あたり乗車人員が路線ポテンシャルよりも大きい系統とそうでない系統を、路線長、パス停止、運行回数、重複数などの特性変数を用いた判別分析で判別する。その結果を表−3に示す。路線長が長く、運行回数が多く、重複数が多く、単位距離当たりのパス停止数が少ない路線ほど、潜在需要が顕在化できていないことが判明した。これらの結果も後述する路線再編のための施策に活用される。

（3）パス路線別特性評価と路線網再編方策

黒字か赤字かという現在の経営状況、および生産効率性と潜在需要の顕在化可能性という2つの評価指標を併用して、熊本都市圏のすべてのパス路線を表−4に示すA〜Hの8つのカテゴリーに分類した。各カテゴリーに分類された路線網を図−3(A)〜図−3(H)に示す。例えば、Aのカテゴリーに属する路線は現在、黒字経営であり、生産効率性、潜在需要の顕在化可能性ともに高い路線群を示す。カテゴリーEは生産効率性、潜在需要の顕在化可能性ともに低いものが赤字を余儀なくされている路線群であり、沿道住民のモビリティ確保のために路線を維持するために公的補助を投入する合理性の論拠を持つ路線といえる。

この表からは、先の判別分析から得られた路線の再編やサービス水準の改善方策をカテゴリーコごとに知ることができる。たとえば、生産効率性は高いものの潜在需要の顕在化可能性が高いカテゴリーBの路線群は、路線の重複を小さくするなどのサービス水準の適正化や潜在需要の高い地域にルートを変

<table>
<thead>
<tr>
<th>表-3</th>
<th>顕在化可能性の判別要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>暗号</td>
<td>設定数</td>
</tr>
<tr>
<td>路線長(km)</td>
<td>0.047</td>
</tr>
<tr>
<td>運行回数（日/日）</td>
<td>0.050</td>
</tr>
<tr>
<td>重複数</td>
<td>0.037</td>
</tr>
<tr>
<td>単位距離当たりパス停止数</td>
<td>-0.184</td>
</tr>
<tr>
<td>バスセンター発着デミ</td>
<td>-0.263</td>
</tr>
<tr>
<td>の中率 (%)</td>
<td>0.618</td>
</tr>
</tbody>
</table>

表-4 特性別路線分類と改善のための対応策

<table>
<thead>
<tr>
<th>評価</th>
<th>経営状況</th>
<th>生産効率性</th>
<th>頭在化可能性</th>
<th>路線数</th>
<th>市営</th>
<th>民間</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>黒字</td>
<td>高</td>
<td>大</td>
<td>10</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>黒字</td>
<td>高</td>
<td>小</td>
<td>2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>黒字</td>
<td>低</td>
<td>大</td>
<td>11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>黒字</td>
<td>低</td>
<td>小</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>赤字</td>
<td>高</td>
<td>大</td>
<td>7</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>赤字</td>
<td>高</td>
<td>小</td>
<td>5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>赤字</td>
<td>低</td>
<td>大</td>
<td>19</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>赤字</td>
<td>低</td>
<td>小</td>
<td>16</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

生産効率性が顕在化可能性とも高く、これまでに存在させていた路線

摘数 | 路線特性 | および改善のための対応策 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>生産効率性に差異化化の可能性とも高く、これまでに存在させていた路線</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>頭在化可能性</th>
<th>路線数</th>
<th>市営</th>
<th>民間</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産効率性の頭在化化の可能性とともに高く、これまでに存在させていた路線</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>評価</th>
<th>経営状況</th>
<th>生産効率性</th>
<th>頭在化可能性</th>
<th>路線数</th>
<th>市営</th>
<th>民間</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>黒字</td>
<td>高</td>
<td>大</td>
<td>10</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>黒字</td>
<td>高</td>
<td>小</td>
<td>2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>黒字</td>
<td>低</td>
<td>大</td>
<td>11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>黒字</td>
<td>低</td>
<td>小</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>赤字</td>
<td>高</td>
<td>大</td>
<td>7</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>赤字</td>
<td>高</td>
<td>小</td>
<td>5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>赤字</td>
<td>低</td>
<td>大</td>
<td>19</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>赤字</td>
<td>低</td>
<td>小</td>
<td>16</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

| 生産効率性の頭在化化の可能性とともに高く、これまでに存在させていた路線 |

32
更することによって、より経営効率を高めることができる可能性がある。これらの情報は、これまで事業者の経験的判断のもとで極めて客観的に行われてきた路線再編計画を、より客観的、かつ合理的に行うことを可能にする。

4. 路線別特性評価に基づくバス路線網再編

(1) JICA STRADA を用いた路線別需要の予測

a) JICA STRADA 概説

路線網再編を行った後の効果を分析するためには、バス路線別輸送需要の予測が必要である。ここでは、国際協力事業団 (JICA) が交通需要の予測と計画に関する効果的な技術移転を実現するために開発した交通需要推計汎用プログラムパッケージ JICA STRADA を用いた。

JICA STRADA は図-5 に示すような画面対応型ユーザーインターフェイスを持っており、視覚的に入力と出力を確認しながら交通需要の予測・評価を実施することができる。従来の 4 段階交通需要推計法を支援する 25 個のサブプログラムから構成されるが、そのいずれを使用するかはユーザーの使用目的に関わって自由に決定できる。本研究では、自動車と公共交通機関との機関分担需要は路線再編後も変動しないと仮定し、公共交通需要配分に関連する Network Editor (道路ネットワーク作成・編集)、Transit Line Editor (公共交通網作成・編集)、Equilibrium Assignment (自動車利用者配分)、Parameter Editor (公共交通利用者配分に関する各種パラメータ設定)、Transit Assignment (公共交通利用者配分)、Transit Reporter (公共交通利用者配分結果のレポート) を使用した。

従来の都市圏規模の公共交通機関利用需要の配分計算では、公共交通機関の路線が通過する道路区間を繰り返し構成されるネットワーク上で、OD間最小コスト経路にすべての OD交通量を配分するという簡単な方法をとるのが一般的である。この方法では個々の路線を区別できないため、公共交通機関相互の乗り換え抵抗や重複路線間の競合など、公共交通機関の配分需要に影響を与える要因を十分に考慮することができない。これに対して、JICA STRADA は鉄道やバスなどの公共交通機関別の路線をネットワーク上で個別に設定できること、設定した公共交通機関利用経路の中から一般化時間が小さい順に複数の利用可能経路に公共交通機関利用 OD交通量を配分することが可能であるなどの利点があり、より現状再現性の高い公共交通利用者配分を行うことができる。さらに種々の効果分析に利用できるように、台キロ台や時間、乗客数、人キロ、人時間、平均トリップ長、平均支払料金などがアウトプットとして算出される。

b) 公共交通機関ネットワークデータの作成と系統別乗車人員の予測精度

対象地域は熊本市都市圏（熊本市と周辺の16市町村）、ゾーンはH9年度第3回熊都市圏パーソントリップ調査 Cゾーン177であり、配分するのは鉄道と市電とバスの利用 OD交通量である。道路網ネットワークはリンク数3,070、ノード数2,386であり、その上に公共交通機関としてバス231系統を設定した。さらに、軌道系列としてJRを3系統（鹿児島本線、豊肥本線、三角線）、市営路面電車を2系統（田崎橋〜健軍町、上熊本駅前〜健軍町）、熊本電鉄を2系統（上熊本〜北熊本、藤崎宮〜御祭念）設定している。前述したとおり、系統はバス路線網を構成する最小単位であり、出発地から到着地までの運行ルートである。一方、重複区間が長く経路が類似した系統や
運行管理上、統一的に扱う系統を統合したものが路線である。系統を路線に統合する方法については付録3を参照されたい。

上記を入力データとし、乗車人員について、JICA STRADAによる配分結果の現況再現性を検証した。図-6に実績値と推定値の散布図を示す、相関係数は0.80、F値は2.0となり、現況再現性は高いといえよう。

（2）路線網再編案の設定

熊本都市圏では、都心の交通センターを中心にして4バス輸送企業が固有のテトリリー内に独自に放射状の系統を設定している。そのために、熊本市内だけでも400以上の系統がある上、目的地への利用可能な系統が分かりにくい路線網となっている。また、1系統あたりの平均運行回数は非常に少ない一方で、競合区間は事業者間の過剰な競争に起因する乗客の取り合いや無駄な停止時間が生じるなど、効率的な運行の妨げとなっている。そこで、第3回熊本都市圏パーソントリップ調査では幹線バスとフィーダーバスにより運行効率を図るゾーンバスシステムの形成が提案されている。このような総合交通体系の基本戦略を満足させ、かつ、以下のような条件を考慮しながら、路線網の再編案を作成した。

1) バス停は現在設定されているものを使用し、新設はしない。
2) バス事業者が所有している従業員や車両等の資源を大幅に変更することなく、総走行キロも現行に近い値になるように設定する。
3) 2)が調整可能な範囲でバス事業者間でも路線再編を行う、市交通局のシェアは極度、増さない。
4) ルートの変更によって路線空虚地域ができないようにする。

JICA STRADAによって制御可能な変数は各路線のルートと運行頻度であり、これらを都市圏バス輸送サービス現況に詳しい専門家と協議しながら、手作業ではあるものの、表-4において示された路線分類の改善等に基づいてシステムティックに設定した。作成した再編案の一例を示す。したものを表-5に示す。総走行キロは合計で約6.8%の増加である。再編された路線網に対してJICA STRADAを用いて公共交通利用OD交通量を配分し、ルートごとに単位距離当たり乗車人員の予測値を求め、この値と再編案に対して計算された路線ポテンシャルとを比較することによって再編後の潜在需要の顕在化可能性を評価する。生産効率性については、再編後の適正費用としての路線別標準的費用を示すことになる。

<table>
<thead>
<tr>
<th>市交通局</th>
<th>KA社</th>
<th>KB社</th>
<th>KC社</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>再編前</td>
<td>18058.5</td>
<td>27491.2</td>
<td>9156.4</td>
<td>5592.1</td>
</tr>
<tr>
<td>再編後 (率)</td>
<td>17425.8</td>
<td>30366.9</td>
<td>10870.9</td>
<td>65618.6</td>
</tr>
</tbody>
</table>

(3) 路線再編後の考察

a) 再編後の路線別評価例

ここでは、路線評価カテゴリーBとE. Fに属する特徴的な路線についての再編案を示し、再編後の路線ポテンシャルと単位距離あたり乗車人員、および生産効率性の適正値である標準的費用の推定結果を示す。ただし、単位距離当たり乗車人員は、周辺他路線のルートや運行頻度の変更にも影響を受けるので、当該路線だけの再編効果というわけではない。

1) 評価カテゴリーB

評価カテゴリーBに分類された系統は、生産効率性は高く、黒字経営を行ってはいるが、潜在需要の顕在化が十分でない路線群である。したがって、潜在需要のある経路へルート変更を行ったり、サービス水準の適正化を行ったりすることによって潜在需要を顕在化させる必要のある路線である。この例として、小島〜川口線、三角線、6-8系統（交通センター〜水前寺〜小倉営業所）の結果を示す。

小島〜川口線は熊本市西部を運行する系統であり、運行頻度を現状より1.7倍に増便することによって、路線ポテンシャルは0.80から1.06へ増加したが、単位距離あたり乗車人員も0.70から1.19まで増加した。潜在需要を十分には顕在化できていない路線が、運行頻度の適正化によって潜在需要を顕在化できるようになったことが分かる。このときの標準的費用は3,990千円であり、生産効率性を維持するためにこの額を超えないような運行管理が求められる。

一方、三角線は再編前の路線ポテンシャルが1.97あるが、JR宇土駅からJR三角駅までは JR三角線と競合しているためにその潜在需要の顕在化が困難な系統である。運行頻度を現状より1.7倍に増便してサービス水準の向上を図ったが、路線ポテンシャルを上回るような潜在需要の顕在化はできなかった。しかし、再編後には単位距離当たり乗車人員の値が増加した。標準的費用は7,885千円となる。

6-8系統については、図-7の実線のような経路に変更した。実線上には熊本県庁や熊本工業高校といった潜在需要が高い施設がある。その結果、路線ポテンシャルは1.89から2.49に、単位距離当たり乗車
人員も1.39から2.61となり、潜在需要を乗客として顕在化することに成功した。再編後の標準的費用は4,060千円となり、この費用を超えないような運行管理が求められる。

2) 評価カテゴリーE

評価カテゴリーEに分類された系統は、生産効率性、潜在需要の顕在化可能性とともに高いにもかかわらず赤字経営を強いられている路線であり、道路住民のモビリティ確保のために路線を維持するための公的補助を投入する合理的な論拠を持つ路線群といえる。これらの系統は、評価カテゴリーAに属する路線群と同様に基本的には再編を行わなくてもよい。しかし、他の評価カテゴリーに属する路線の再編によつて変更を余儀なくされるものもある。これらの例として8-14系統（交通センター→城西高校）、鹿E（交通センター→託麻市民センター→木山）、東4系統（自衛隊環状）の結果を示す。8-14系統は再編前とルートと運行頻度に変更はないが顕在化可能性は高い値を維持している。このときの標準的費用は17,593千円である。東4系統は運行頻度が非常に高い幹線系統であり、ルートの一部が重複している他路線の廃止や運行頻度の適正化によって路線ポテンシャルは0.27から0.72へ、路線単位距離当り乗車人員も0.96から1.58に増加した。標準的費用は49,635千円である。鹿4Eは評価カテゴリーFに属する鹿4Bと統合することによって運行頻度を1.7倍に増加させ、その結果、路線ポテンシャルは0.37から0.85、路線単位距離当り乗車人員も0.75から1.13へと増加した。標準的費用は12,493千円である。

3) 評価カテゴリーF

このカテゴリーに分類されている系統は、生産効率性は高いものの、潜在需要の顕在化可能性が小さいために赤字となっている路線群であり、サービス水準を適正化して潜在需要を顕在化させるか、あるいは路線からの撤退も考慮すべき系統である。例として、北1AK（交通センター→富の原～菊池温泉）の運行回数を現況の2.0倍に増加した結果を示す。再編後の路線ポテンシャルは1.36から1.25に低下したが、単位距離あたり乗車人員は1.13から1.59に向上し、潜在需要の顕在化可能性が大きく改善された。標準的費用は87,096千円である。また、県16系統（交通センター→県庁→熊本空港）は、図-8に示すように評価カテゴリーHに属する東5系統（中島五丁目～健軍～木戸産交）に統合し、県庁を経由して熊本空港を終点とする経路に変更した。その結果、路線ポテンシャルは0.31から0.82へ、単位距離当り乗車人員は0.30から0.94に増加し、潜在需要の顕在化に成功している。

b）バス路線網再編後の効果

a）では、カテゴリー別に特徴的な系統別に再編後の効果を検討してきた。ここでは、再編前の路線ポテンシャルと路線単位距離当り乗車人員の分布を図-9に示す。路線ポテンシャルは再編前に2.25であった平均値は再編後には2.46となり、9.3％も増加した。一方、路線単位距離当り乗車人員の平均値は、路線ポテンシャルのそれほど大きくないことの、再編前の1.93から再編後には2.01になり、4.1％増加している。再編前の各企業の標準的費用とSTRADAのアウトプットから得られる料金収入を表-6に示す。KC社とKA社では路線再編による料金収入の増加に比べて標準的費用が増大し、必ずしも企業経営を改善
表6 再編前後の標準費用と推定収入

<table>
<thead>
<tr>
<th></th>
<th>市交通局</th>
<th>KA社</th>
<th>KB社</th>
<th>KC社</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準費用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>前</td>
<td>2,411</td>
<td>1,527</td>
<td>1,475</td>
<td>773</td>
<td>1,279</td>
</tr>
<tr>
<td>後</td>
<td>1,339</td>
<td>1,220</td>
<td>1,999</td>
<td>1,943</td>
<td>737</td>
</tr>
<tr>
<td>料金収入</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>前</td>
<td>1,80</td>
<td>1,25</td>
<td>0.74</td>
<td>0.40</td>
<td>1.74</td>
</tr>
<tr>
<td>後</td>
<td>1.80</td>
<td>1.25</td>
<td>0.74</td>
<td>0.40</td>
<td>1.74</td>
</tr>
</tbody>
</table>

表6は、合計値の相違などによって推計せざるを得ない。路線別特性評価に用いるデータそのもののが推定値とならざるを得ない状況では、分析結果はより多くの誤差を含むことは明確である。本来、これらには実績値を用いるべきであり、路線別のポイントフォリオとなる各種基礎データの正確な記録と公開が必要である。

3) 生産効率性の評価は、経年データを用いて特定化された長期費用関数による標準的費用と実績費用との大小比較によってなされると、標準的費用は回帰推定値であるから、実績費用との大小の差の有無は、たとえばαパーセントの信頼区間などによる統計的な検定がなされるべきであろう。

4) 同様に、潜在需要の観在化可能性は路線ポテンシャルと単位距離あたり乗車人員の実績値と仮想比較において論じた。したがって、両者の相関の大小がとるまで潜在需要の観在化可能性の有無を表していないわけではない。標準化を行うなどして相対的に比較可能な指標にするなどの改善も必要である。

5) このように、本手法は生産効率性と潜在需要の観在化可能性についての比較指標と実績値との相対的な比較によってなされているのに過ぎない。しかし、両指標は、特性別の路線分類、およびそれに融合した改善のために採るべき方策に対して十分に活用できる情報を含んでいる。

6) 本手法は、従来の勘や経験的な判断による路線
補表－1 路線別の年間走行距離、年間乗車人員、総費用の推計モデル

<table>
<thead>
<tr>
<th></th>
<th>KA 社</th>
<th></th>
<th>KC 社</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>年間走行距離</td>
<td>年間乗車人員</td>
<td>総費用</td>
</tr>
<tr>
<td>定数項</td>
<td>76440.4 (1.93)</td>
<td>84470.5 (1.95)</td>
<td>-3.53E+07 (1.10)</td>
</tr>
<tr>
<td>走行距離（km/日）</td>
<td>370.2 (8.1)</td>
<td>144.2 (7.05)</td>
<td>2.34E+06 (1.91)</td>
</tr>
<tr>
<td>運行回数（本/日）</td>
<td>1.98E+06 (2.64)</td>
<td>1.8E+06 (0.93)</td>
<td>4.81E+05 (0.93)</td>
</tr>
<tr>
<td>台時間（時）</td>
<td>重相関係数</td>
<td>0.67</td>
<td>0.90</td>
</tr>
<tr>
<td>F 値</td>
<td>4.60</td>
<td>2.13</td>
<td>3.77</td>
</tr>
</tbody>
</table>

補表－2 費用関数の推定結果

<table>
<thead>
<tr>
<th></th>
<th>市交通局</th>
<th>KA 社</th>
<th>KB 社</th>
<th>KC 社</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α₀(推定値)</td>
<td>t 値</td>
<td>α₀(推定値)</td>
<td>t 値</td>
</tr>
<tr>
<td>ln Q_i</td>
<td>α_1</td>
<td>0.883</td>
<td>3.29</td>
<td>-1.557</td>
</tr>
<tr>
<td>ln P_j</td>
<td>β_w</td>
<td>0.859</td>
<td>49.2</td>
<td>0.709</td>
</tr>
<tr>
<td>ln P_j</td>
<td>β_r</td>
<td>0.084</td>
<td>71.0</td>
<td>0.193</td>
</tr>
<tr>
<td>ln P_j</td>
<td>β_f</td>
<td>0.057</td>
<td>86.9</td>
<td>0.098</td>
</tr>
<tr>
<td>ln Q_i ln Q_j</td>
<td>Ψ_{ww}</td>
<td>0.046</td>
<td>2.13</td>
<td>0.278</td>
</tr>
<tr>
<td>ln Q_i ln Q_j</td>
<td>Ψ_{rr}</td>
<td>0.038</td>
<td>3.53</td>
<td>0.094</td>
</tr>
<tr>
<td>ln Q_i ln Q_j</td>
<td>Ψ_{wr}</td>
<td>-0.296</td>
<td>1.98</td>
<td>-0.074</td>
</tr>
<tr>
<td>ln Q_i ln Q_j</td>
<td>Ψ_{rf}</td>
<td>-0.029</td>
<td>2.32</td>
<td>-0.029</td>
</tr>
<tr>
<td>ln P_i ln P_j</td>
<td>δ_u</td>
<td>0.165</td>
<td>3.82</td>
<td>-0.483</td>
</tr>
<tr>
<td>ln Q_i ln P_j</td>
<td>δ_{ss}</td>
<td>-0.096</td>
<td>3.66</td>
<td>-0.483</td>
</tr>
<tr>
<td>ln Q_i ln P_j</td>
<td>δ_{sj}</td>
<td>-0.096</td>
<td>3.53</td>
<td>0.359</td>
</tr>
<tr>
<td>ln Q_i ln P_j</td>
<td>ρ_{wt}</td>
<td>-0.165</td>
<td>3.82</td>
<td>0.483</td>
</tr>
<tr>
<td>ln Q_i ln P_j</td>
<td>ρ_{st}</td>
<td>0.096</td>
<td>3.66</td>
<td>0.359</td>
</tr>
<tr>
<td>ln Q_i ln P_j</td>
<td>ρ_{sf}</td>
<td>0.069</td>
<td>3.53</td>
<td>0.069</td>
</tr>
<tr>
<td>式(2)</td>
<td>残差平方和</td>
<td>0.0011</td>
<td>0.0043</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>DW 比</td>
<td>20.6</td>
<td>2.82</td>
<td>2.37</td>
</tr>
<tr>
<td>式(3)</td>
<td>残差平方和</td>
<td>0.0002</td>
<td>0.0077</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>DW 比</td>
<td>1.80</td>
<td>3.18</td>
<td>1.51</td>
</tr>
<tr>
<td>式(4)</td>
<td>残差平方和</td>
<td>0.0001</td>
<td>0.0036</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>DW 比</td>
<td>1.84</td>
<td>3.18</td>
<td>1.35</td>
</tr>
</tbody>
</table>

網の設定をサポートし、マニュアルではあるものの、システムティックで合理的な路線網の再編案を提案できる。この情報をもとに、JICA STRADA を用いて、熊本都市圏路線網の推計案を提案することができた。
7) 路線再編後の総収入はほどほど変わらないが、標準的費用は再編前よりかなり小さいこと、単位距離当たりの乗車人員の数が現状より 4.1%程度大きくなっていてることから、今回の路線別特性評価に基づく路線再編の実用可能性は高いといえる。

付録

付録１：
生産要素価格 P_i (i = 1, 2, …, n) および産出量 Q_i (i = 1, 2, …, m) の関数であるトランスログ型費用関数式 (1)の C は総費用、α_i, β_j, δ_α, γ_q, ρ_q は推定されるべきパラメータである。生産活動においては、一般に産出量と投入要素価格それぞれで

δ_α = δ_β, γ_q = γ_β

なる対称性が成立する。また、総費用 C は投入要素
価格 \(P_i \) に関して 1 次同次であるから,

\[
\sum \beta_i = 1, \sum \gamma_i = 0 (i=1, \ldots, n), \sum \rho_i = 0 (i=1, \ldots, n)
\]

が成立しなければならない。また、シェーバードの補題により、費用を最小にする最適な生産要素投入量の組み合わせ \(x_i \) は

\[
\frac{\partial \ln C}{\partial P_i} = x_i (P_i / C) = \frac{\sum \gamma_i \ln P_i + \sum \rho_i \ln Q_i}{x_i (P_i / C) = \beta_i}
\]

なることが知られており、その結果,

\[
\frac{\partial \ln C}{\partial P_i} = x_i (P_i / C) = \beta_i + \sum \gamma_i \ln P_i + \sum \rho_i \ln Q_i
\]

が得られる。第 2 項の \(x_i P_i \) 部は投入要素の費用を表していることにより、\(x_i (P_i / C) \) は総費用に占める投入要素の費用絶対値 \(S_i \) を表す。このように、費用関数の中には生産関数の技術的条件に関するすべての情報が含まれている。

付随 2:

KA 社については一部の路線について、KC 社については全ての路線について、年間走行距離や年間乗車人員、総費用などのデータが入手できなかった。そのため、KA 社については既知の路線のデータから、KC 社については経営構造が似ている KB 社の路線データを用いた回帰分析により推計している。結果を補充 1 に示す。いずれのモデルも適合性は高く、信頼性のあるモデルが得られている。

付随 3:

モデルの制約で対象地域内のバス系統の全てを設定することができないために適切に統合した。統合のルールは下記の通りである。

1. 一日の上りと下りの運行回数の平均が 2 本未満、4 本以上 10 未満、10 本以上の系統の 3 つに区分する。
2. 10 本以上の系統は除外する。
3. 4 本未満の路線は、バス利用が不可能な地域が生じるような単独系統は残すが、それ以外は統合した。

参考文献

1. 枝村俊光、森津秀夫、松田商、土井元洋：最適バス路線網構成システム、土木学会論文集、No.300.pp.95-107、1980。
2. 天野光一、戸谷信昭、近藤信明：都市道路におけるバス系統の設定計画モデルに関する研究、土木学会論文集、No.325、pp.143-154、1982。
3. 吕山純一：ITS を活用した公共交通活性化のための計画立案評価支援システムの開発研究、平成 12・13 年度科学技术研究費補助金（基盤研究(C)2）研究成果報告書。
4. 竹内保夫、山田寿夫：都市バスにおける公共援助の論理とその判定基準としての路線ポテンシャル、土木学会論文集、No.425/IV-14、pp.183-192、1991。
5. 杉尾恵太、郷部住明、竹内保夫：企業性と公共性を考慮したバス路線別経営改善方針の検討－バス路線のギャップを指標として－、土木計画学会論文集、No.16、pp.785-792、1999。
6. 杉尾恵太、郷部住明、竹内保夫：GIS を用いたバス路線網計画支援システムの構築－潜在需要の把握による路線評価について－、土木計画学会論文集、No.18、pp.617-626、2001。

A METHOD OF LINE CHARACTERISTIC EVALUATION AND NETWORK REORGANIZATION PLANNING OF BUS SYSTEMS

Shoshi MIZOKAMI, Ryuji KAKIMOTO and Junya HASHIMOTO

By the spread of passenger cars, and introduction of a new transportation system, the bus attraction gets worse in cities across the country. As deregulation of bus service, it is easy to enter or get out of bus service. When bus employer gets out of unprofitable bus route, there is fear that the life route for local resident is spoiled. So we need characteristic evaluation by bus service. In this paper, from the two view points of production efficiency and elicitation potential demand along the bus line, we assess existing bus line and propose rational method of reorganization on bus network on Kumamoto urban area.