
1. Introduction 
 

The two most commonly adopted meshing strategies 
in CFD (Computational fluid dynamics) community are 
generally referred to as structured mesh and unstructured 
mesh. The signature feature of structured mesh is the 
implicit grid structure, which may alleviate the need to 
store the mesh connectivity and permit the construction 
of rapid solution algorithms (Mavriplis, 1996). In order 
to take full advantages of structured mesh, many 
researchers have been devoting themselves to improving 
existing algorithms and developing new schemes. (e.g. 
Jongen, 1997; Kimura and Hosoda, 2003; Li and 
Fleming, 2003; Johnston and Liu, 2004; Brüger et al., 
2005) However, despite its widespread use, the 
structured mesh methods are generally limited to solution 
domains of a relatively simple shape. It is very difficult 
and sometimes impossible to generate structured mesh 
for complex geometries, especially in 3D space. On the 
other hand, flows in complex geometries are usually 

encountered and of great interest in the engineering 
practices nowadays. For example, turbulent flows pass 
the natural rivers with extremely irregular cross sections 
or artificial channels with small but important hydraulic 
structures. An accurate resolution of the study domain 
and local mesh refinement necessitates the employment 
of unstructured mesh methods. 

Although the past several decades have witnessed the 
significant development in unstructured mesh methods, 
most of the published literatures dealt with flow 
phenomena in other fields such as aerodynamics. (e.g. 
Mavriplis, 1997; Nakahashi et al., 1999; Hassan et al., 
2000; Nakahashi et al., 2003; Basara, 2004) Hydraulic 
engineering poses many special problems requiring 
solution methods probably not included in other fields. 
But the related research is quite few to the authors’ 
knowledge and is generally confined to 2D flows. For 
instance, Kim et al. (1997) reported a RANS 
(Reynolds-averaged Navier-Stokes equation) solver 
based on a 2D unstructured mesh, and the solver was 
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verified to be capable of predicting some wall-bounded 
turbulent flows with a good accuracy. Nallapati and 
Perot (2000) developed a staggered unstructured mesh 
method for the 2D calculation of free surface flows and it 
was applied successfully to some benchmark problems. 
Recently, Olsen (2003) constructed a 3D model to 
calculate the formation of a meandering channel. The 
turbulent flow was predicted with an unstructured mesh 
based k-ε  model. Unfortunately, very few information 
has been shown on the quantitative comparison between 
the computational result and the physical model 
measurement in the paper. Haque et al. (2005) also 
carried out a 3D numerical simulation with a RANS 
solver provided by the commercial software FLUENT. 
The hybrid mesh adopted in the study was argued to be 
able to resolve the detailed hydraulic structures with a 
relatively small total number of cells. They compared the 
temperature distribution within a dam and its forebay 
situated on the Colombia River and found a reasonable 
similarity between the calculation and measurement. But 
the velocity field was not validated due to the shortage of 
field data. 

In this study, an unstructured mesh based RANS 
solver is proposed based on a 3D FVM (Finite volume 
method) procedure. The standard k-ε  model and some 
non-linear k-ε  model have been integrated with this 
solver. The wall function approach is employed to 
resolve the near-wall area. Hybrid polyhedral mesh up to 
six faces may be used. This solver is designed as a 
module in a morphological model and may serve as a 
powerful tool for the investigation of river engineering.  

The paper is organized as follows. In the succeeding 
section, a set of governing equations is firstly introduced. 
After that comes the detailed information on FVM 
formulation in Section 3. From Section 4 to Section 6, 
the discretization methods, the boundary conditions and 
the solution algorithms for sparse equation systems are 
presented one after another. In Section 7, three numerical 
examples are tested and computational results are 
compared with existing laboratorial measurements, 
which is followed by the final conclusion in Section 8. 

 
2. Governing equations 
 

An engineer is usually concerned with the 
time-averaged properties of turbulences (Launder and 
Spalding, 1972). This suggests ways of accounting for 
the turbulences on the mean flow behavior by solving the 

RANS rather than solving the NS (Navier-Stokes 
equation) directly. In hydraulic engineering, as is 
well-known, the k- ε  model and its variants are the 
widely used turbulence models based on the RANS. In 
this kind of models, the mean quantities are directly 
solved from the corresponding transport equations and 
the time-averaged turbulences are modeled by 
introducing some assumptions and simplifications. 
 
2.1 Mean flow 

The unsteady 3D RANS and continuity equation 
expressed in a Cartesian coordinate system with the 
tensor notation are as follows. 
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where ui= time-averaged velocity; xi= Cartesian 
coordinate component; ρ = density of the fluid; fi= 
body force; p= time-averaged pressure; v= molecular 
kinematic viscosity of the fluid; ' '

ij i ju uτ ρ= − , are the 
Reynolds stress tensors, and '

iu is the fluctuating velocity 
component. The equation system is not closed, and the 
Reynolds stress tensors have to be evaluated in some 
other ways. 
 
2.2 Turbulence closure 

In the standard k-ε  model, the Reynolds tensors are 
acquired through the linear constitutive equation. 

' ' 22
3i j t ij iju u v S kδ− = −  (3)

where k= turbulence kinetic energy; ijδ = the 
Kronecker delta; vt = eddy viscosity and Sij= the 
strain-rate tensor, the latter three are expressed by 
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in which Cµ  is a coefficient, and is usually set to be a 



constant and equal to 0.09, ε  is the dissipation rate of 
the turbulence kinetic energy k. Two transport equations 
as described below are employed to estimate k and ε , 
respectively. 
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where G= the rate-of-production of the turbulence 
kinetic energy k, is defined as 
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and the model constants suggested by Rodi (1980) 
generally take the universal values as below. 

92.144.13.10.1 21 ==== εεεσσ CCk  (8)

The standard k-ε  model suffers from some inherent 
defects in particular the omission of any anisotropic eddy 
viscosity effects. This may be partially cured by 
introducing a non-linear constitutive relation between the 
turbulence stresses and the mean strain rate satisfying 
certain tensorial properties. Efforts and achievements 
have been make by many research groups such as 
Rubinstein and Barton, 1990; Gatski and Speziale, 1993; 
Shih et al, 1995 and Kimura and Hosoda, 2003. A 
general form for a quadratic constitutive equation can be 
summarized as 
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where a1, a2 and a3 are coefficients, which may have 
different values due to different models. 

 
3. Finite volume formulation 
 

In an FVM procedure, the study domain is divided 

into a number of continuous polyhedral CVs (Control 
volumes). If one integrates the governing PDEs (Partial 
differential equations) over a CV, the general form reads 

∫ ∫∫∫ +⋅∇Γ=⋅+
∂
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t
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where V= the volume of the CV; S= the CV surface with 
a unit normal vector n directing outwards; φ = general 
conserved quantity representing either scalars or vector 
and tensor field components; u= the fluid velocity vector 
whose Cartesian components are ui or (u, v, w); Γ = 
diffusion coefficient and b= the volumetric source of the 
quantityφ . It is noted that Eq. 10 has a left side of a 
transient term and a convective term balanced by a 
diffusive term and a source term on the right. The 
equation is mesh-independent and is valid for arbitrary 
polyhedral CVs. As a result, an FVM procedure is able 
to take full advantages of an unstructured mesh system. 
Moreover, summation of the equations for all CVs leads 
to the global conservation equation because the inner CV 
faces will cancel out. This is also one of the most 
attractive points to use FVM in engineering practices. 
 
3.1 Data structure 

In an unstructured mesh method, the mesh 
connectivity is not implicitly known. Since the CVs may 
be numbered in any order and have any number of 
neighbors, an extra space in the memory should be 
maintained for that kind of information. This may 
sometimes result in a considerable consumption of 
computer resources. 
   As is known, any kind of polyhedral mesh may be 
used in the simulation theoretically, but the generally 
adopted unstructured mesh in engineering practices is 
confined to tetrahedra, pyramids, prisms and 
hexahedra. A partial explanation lies in the difficulty of 
generating polyhedral mesh with more than six faces. 
Amongst all the above mesh types, the hexahedron 
may be accounted as the general case, and the 
quadrilateral is the general case for the CV face 
correspondingly. It indicates that a hybrid mesh system 
in practice is possible to be considered as a hexahedral 
mesh provided that the polyhedra with less than six 
faces are assigned some nominal ones to satisfy the 
convention. This provides a way to simplify the data 
structure in storage. 
   In order to define the connectivity of the CVs, there 
are a lot of alternatives. The most general data structure 



contains all the information of the CV explicitly. That 
is: a CV is defined by its six faces, faces by the lists of 
edges and edges by their corresponding vertices. 
However this method is not preferred to reduce the 
number of arrays needed for the definition of mesh 
connectivity. A simplified data structure is introduced 
here. This method is also employed in some CFD 
codes and recommended by Ferziger and Perić (2002). 
  As indicated in Fig. 1, the CV is defined by a list of 
its eight vertices in a counter-clockwise order. With 
such definition, the faces enclosing the CV and the 
edges forming the faces are also uniquely identified. 
They may be implicitly organized in an ordered way 
without occupying any computer memory. Moreover, 
since the arbitrary polyhedral mesh is stored as a 
hexahedral mesh, the number of the neighboring CVs 
is fixed to be six. Hence the neighboring CV which 
shares a common face with the current CV may also be 
indexed in the same ordered way as that for the faces. 
For nominal hexahedra, due to the existence of nominal 
faces, some of the vertices will be repeated during 
storing as also shown in Fig. 1. Using this kind of 
treatment, the input of the mesh system includes only a 
list of nodal coordinates, a list of vertices of the CVs 
and a list of the neighboring CVs. 
 

3.2 Surface and volume calculation 
With the aforementioned data structure, it is no need 

to evaluate the geometrical elements for arbitrary 
polyhedra. The calculation is limited to quadrilaterals in 
2D and hexahedra in 3D. As the area and the center of a 
triangle is very easy to acquire. One can subdivide a 
quadrilateral face into two triangles and the vector area 
is approximated by the summation of those of the two 
sub-triangles. For instance, the vector area of the 
quadrilateral (1,2,3,4) in Fig. 2 is computed from 
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where ri = the ith vertex of the CV; i, j, k = unit vectors 
in the x, y, z coordinate directions; S123, S134= vector 
areas of the sub-triangles ∆123 and ∆134, respectively and 
S1234= vector area of the quadrilateral surface (1,2,3,4). 

The center of the surface is the mean value of those 
of the sub-triangles weighted by the corresponding 
area, i.e. 
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where c= the center of a surface and S= the area of a 
surface. 

Extending the above logic from 2D to 3D, a 
hexahedron is divided into 6 tetrahedra. The evaluation 
of the volume is thus acquired by summation of the 
volumes of all the sub-tetrahedra corresponding to their 
partitioning. And the volume of a tetrahedron is a dot 
product of two vectors, for example the volume of 
tetrahedron (1,5,6,7) is 

( ) 567151567 Srr
3
1

⋅−=V  (14)

where V1567= the volume of tetrahedron (1,5,6,7). The 
centroid of the CV is the mean value of those of the 
sub-tetrahedra weighted by the corresponding volume. 

V
V ii

V
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where cV= the centroid of the CV; Vi= the volume of 
sub-tetrahedron i (i ranges from 1 to 6) and ci= the 
centroid of sub-tetrahedron i . 

According the above analysis, the sub-routine for the 
calculation of the geometry elements can be easily 
coded. 

 
4. Discretization methods 
 

In a collocated FVM procedure, the variables are 
defined at the center of the CV. A second order midpoint 
rule is generally used for the integral approximation. If 
the transient term is absent for the time being, the control 
volume equation (i.e. Eq. 10) may be discretized term by 
term and written as 
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where uf⊥= the fluid velocity normal to the surface; bP= 
part of the source term containing all the contributions 
excluding unknown variables and p ps φ− = part of the 
source term including the unknown variables which can 
be treated implicitly. The subscript P= the present CV 
and the subscript f= the face of the CV. 

It is readily seen that Eq. 16 is not an explicit 
expression of the variables defined at the centers of the 
CVs. Values at other locations have to be obtained by 
some kind of interpolation methods. The diffusive term 
contains the gradient of a quantity, which necessitates 
some numerical differentiation techniques. 

An arithmetic interpolation method is commonly 
used to evaluate the surface values. For a quantityφ  on 
the surface, 

( ) AfPff φαφαφ −+= 1   
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in which the subscript A= the adjacent CV, dfP and dAf 
are the distances from the surface to the present CV and 
to the adjacent CV, respectively. If the line connecting 
the two CV centers does not pass through the center of 
the common face center, a correction term may be 
introduced. In this case 

( ) ( )fffff ′′′ −⋅∇+= rrφφφ  (19)

where f’= the intersection of the surface and the line 
connecting the two neighboring CVs (see Fig. 3), the 
gradient at f’ is obtained by interpolating the cell-center 
gradients at either side of the face. And the Gauss’ 
theorem may be employed to determine the cell-center 
gradients. 

 
Fig.3 Interpolation of the surface value 

 
The discretization methods adopted here have been 

suggested by some other publications such as Ferziger 
and Perić (2002) and applied to various problems. It 
serves as a basic scheme whenever a surface quantity 
needs to be interpolated. 
 
4.1 Spatial discretization 

From the viewpoint of stability and ease of 
programming, higher order scheme is avoided in this 
study. The power law scheme is employed during the 
spatial discretization. This scheme is relatively easy and 
has been confirmed to be applicable in 3D calculations 
(Wilson et al., 2003; Olsen, 2004).  

With the power law scheme, Eq. 16 can be finally 
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where the strength of the convection Ff, diffusion 
conductance Df  and the ratio of them are given as 
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The interpolation of the diffusive coefficient on the 
surface and the surface flux deserve special attention. 
For the diffusive coefficient, the harmonic mean may 
reflect more physics and reasonableness in particular 
near the boundary. This results in 
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A simple arithmetic mean for the surface flux may 
lead to checkerboard variable distribution, which has 
caused the slow acceptance of the use of collocated 
mesh. This problem can be cured by the interpolation 
method proposed by Rhie and Chow (1983). The 
method introduces an additional term related to the 
pressure gradient when calculating the fluxes on the 
surface. 

As is known, the unknown quantities of the present 
CV can be finally expressed by all of its neighboring 
CVs after discretization. For instance, the momentum 
equations for u at present CV and one of its adjacent 
CVs are written as 
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where a= coefficient for the unknown at the center of 
the approximated CV and nb= the neighboring CV.  
   From the conservation principle of the FVM 
formulation, the velocity at the common face of the two 
neighboring CVs must also have a discretized 
momentum equation of the similar form as that of 
Eq.24, i.e. 
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   Approximating the solution uf of Eq.25, the 
information from Eq.24 can be used. By using some 
linear interpolation and simplification, the following 
equation is obtained. 
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in which Sfx= projected area of the surface to the yz 
plane (perpendicular to the x axis). The extension to 
other velocity components is straightforward. 
 
4.2 Temporal integral 

At the end of the spatial discretization, one can get 
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Taking the second order implicit Crank-Nicolson 
scheme as follows 
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where the superscript m and m+1 stand for the previous 
and the current time step. One can arrive at the final 
algebraic equation set. 
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It is seen from Eq. 31 that after the time integral, a 



time-related term is introduced to the coefficient of aP 
comparing with the steady case. And besides a 
temporal term, there is another contribution from the 
previous time step to the source term. 

 
4.3 Pressure-velocity coupling 

The solution procedure follows the SIMPLE 
(Semi-implicit method for pressure-linked equations) 
algorithm. The main concept of this method is to guess 
the pressure and get a pressure correction with the 
continuity equation. The procedure is summarized here. 

In the derivation, the guessed pressure and the 
velocity field not satisfying the continuity equation are 
denoted with an index *, the correction of the variable is 
denoted with an index ‘, and the variable without any 
superscript stands for the corrected value. Hence, 
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*
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Extracting the pressure term from the source term in 
the discretized momentum equation, the velocity 
component in the x direction satisfies 

* * *
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nb f
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On the other hand, the same momentum equation 
based on the corrected velocity component has the 
following form 

P P nb nb fx f p
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If Eq. 33 is subtracted from Eq. 34 and Eq. 32 is taken 
into account, the velocity correction is obtained. 
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In a SIMPLE method, the first term on the right hand 
side is omitted. Then the velocity correction in the CV 
center has a simple relation with the pressure correction. 
For the velocity correction on the surface, the same 
relationship is assumed to be valid instead of 
interpolating the value from the CV centers. It means 

( )1
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The correction of other velocity components may be 
derived in the same way. The corrected velocity field is 

then introduced to ensure the continuity equation. An 
equation set for the pressure correction will be obtained. 
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This equation set is closed and solution of the 
equations yields the pressure correction. The velocity 
field is renewed and a new iteration starts until 
convergence. 
 
5. Boundary conditions and near-wall treatment 

 
Appropriate boundary conditions should be specified 

depending on the nature of the flow. The inlet boundary 
is generally considered as a Dirichlet boundary and all 
the quantities have to be prescribed. At the outlet 
boundary, the flow information is usually little known. A 
Neumann boundary with zero gradients may be assumed 
if the outlet is set as far downstream of the study domain 
as possible. The water surface is considered as a 
symmetrical plane for the time being. It may be 
acceptable for many hydraulic problems. Special 
attention has been paid for the impermeable wall 
boundaries. 

The no-slip condition is the appropriate condition for 
velocity components at both the riverbed and the side- 
walls. However the wall function approach is preferred 
here to avoid the possible integration through the viscous 
sub-layer and implement the wall roughness more 
flexibly. In the wall function approach, the near wall CV 
velocity is assumed to be parallel to the wall and denoted 
by u//. Although it is not always the case, the treatment 
can be simplified without significant influence on the 
result. 
   With the definition of the dimensionless distance y+ 
and dimensionless velocity u+ as follows 

ν
⊥+ =

yuy * , 
*

//

u
uu =+  (38)

where u*= the friction velocity near the bed and y⊥= 
the normal distance from the center of the near wall CV 
to the wall surface, the universal wall function can be 
expressed by 

( )++ = Eyu ln1
κ

 (39)

where κ = the van Karman constant (= 0.41) and E= 
roughness parameter of the wall. Assuming that the 



flow is in local equilibrium, i.e. the production and 
dissipation rate of the turbulence are nearly equal, one 
can obtain 

2/14/1
* PkCu µ=  (40)

   Then the wall shear stress is written as 
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   In the momentum equations, the link with the wall 
is suppressed by setting it to zero and adding the wall 
force in Eq.41 as a source term. The normal derivative 
of k at the wall boundary CV is set to be zero in the 
k-ε equation, and the production in the wall region is 
computed from 
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  ε  in the near wall CV is directly set to 
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*  (43)

The roughness parameter in Eq. 39 provides a simple 
way to take the bed roughness into account. Suggested 
by some researchers (e.g. Wu et al., 2000; Salaheldin, 
2004), this parameter may be evaluated as below. 

( )expE B Bκ = − ∆   (44)

where B=5.2, is a constant; ∆B= roughness function 
defining the shift of the intercept due to roughness effect, 
it is evaluated from 
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and ks is the equivalent roughness height. For a hydraulic 
smooth bed, ks=0, and for a rough bed, many empirical 
relations are available in the literatures according to the 
bed conditions (e.g. Chang, 1988; van Rijn, 1993). 
 
6. Solution methods 

The equations are solved in an implicit decoupled 
way. The final algebraic equation systems are 
under-relaxed before submitted to the equation solver. 
The widely used method proposed by Patankar (1980) 
is adopted here. It has been found to be very efficient 
owing to its increasing of the diagonal dominance of 
the coefficient matrices. 

Considering the sparseness and non-symmetry 
characteristic of the coefficient matrices, Krylov 
subspace iterative methods are preferred. The most 
popular and representative methods may include 
GMRES (Generalized minimal residual method), 
Bi-CGSTAB (Bi-conjugate gradient stabilized method) 
and TFQMR (Transpose-free variant of quasi-minimal 
residual method). In order to get practically useful, the 
iterative solver usually works with a suitable 
preconditioner. In this study, a preconditioned GMRES 
is employed together with an ILUTP (Incomplete LU 
factorization with threshold and pivoting) 
preconditioner. A complete presentation on iterative 
methods and preconditioning techniques can be found 
in the book published by Saad (2003). 
 
7. Applications 
 

The proposed methodology is applied to three kinds 
of turbulent flows in the following sub-sections. 
Different turbulence models and different meshing 
strategies have been tested. 

 
7.1 Flow in a straight rectangular channel 

Imamoto et al. (1987) carried out a series of 
experiments concerning the flow in open channels. An 
LDV (Laser Doppler velocimeter) system was used to 
measure the fully developed turbulent flow velocities in a 
transverse cross-section. In this section, one case was 
selected to verify the proposed methods. 

The experiment conditions are given in Table 1. The 
laboratory flume is geometrically symmetrical, and only 
half of the domain is calculated by employing a 
symmetrical plane boundary condition. A longitudinal 

Table 1 Experiment conditions 

Width
B(cm)

Depth
H (cm)

Discharge
Q (l/s)

Slope 
Ie 

Reynolds 
number 

Froude
number

20.0 4.00 2.055 1/1,400 7,700 0.48
 



distance of 140cm (=35H) is assumed to be long enough 
to diminish the influence of inlet and outlet boundaries 
and has been chosen for the simulation after some trial 
computations. The standard k-ε model and a non-linear 
k-ε model proposed by Kimura and Hosoda (2003) are 
implemented on a hexahedral mesh with a total number 
of 10,626, respectively. A logarithmic velocity profile is 

prescribed at the inlet boundary. The turbulent quantities 
k and ε are specified corresponding to a viscosity ratio 
of 10.0 and taking the turbulence intensity 8%. 

The computed longitudinal velocity and turbulence 
kinetic energy in the transverse cross-section compared 
with the experimental result are shown in Fig.4 and Fig.5, 
respectively. Ishigaki (1993) simulated the same flow 

z/H                                            z/H 

(a) Experimental result                           (c) Non-linear model result 
z/H                                            z/H 

 
 (b) Linear model result                           (d) Structured mesh result 

 
Fig. 4 Comparison of the longitudinal velocity u (cm/s) 
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(a) Experimental result                           (c) Non-linear model result 
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(b) Linear model result                          (d) Structured mesh result 

 
Fig. 5 Comparison of turbulence kinetic energy normalized by squared friction velocity k/u*
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phenomenon with two ARS (Algebraic Reynolds stress 
simulation) models based on a structured mesh. The 
result of one of the models proposed by Naot and Rodi 
(1982) is also shown in the figures. 

A standard model does not include any information 
of the vortices and the secondary currents, which in 
return affects the prediction of the mean flow pattern. 
This may be evidently observed in the comparison of the 
longitudinal velocity in Fig. 4. Both the non-linear model 
and the ARS model give a closer result to the LDV 
measurements than the linear one. It is also interesting to 
note that the non-linear model in this selected case seems 
to perform even better than the ARS model. The reason 
is not much known, but it demonstrates that the 

unstructured mesh method in this study is at least 
comparable to a structured one. 

In the comparison of the turbulence kinetic energy 
(the absolute value has been normalized by the squared 
friction velocity), the non-linear model again manifests 
itself to be the best solution. However, in all 
computational cases, the area near the wall boundaries 
has been slightly over-estimated. A further comparison is 
carried out in Fig. 6 between the experimental result and 
the non-linear model for the lateral Reynolds stress 
distribution at different water depths. The values are 
again normalized by the squared friction velocity. The 
over-estimation of the Reynolds stresses near the 
boundary area is observed. And away from the boundary, 

      
2
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*/v w u′ ′−      2
*/w u u′ ′−  

  Fig. 6 Comparison of the lateral Reynolds stress distribution (Left: Experiment; Right: Computation) 
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the model result is very close to the measurements. The 
employment of the wall function approach may be the 
main error source for this simulation. 
 
7.2 Flow in a square embayment 

The flow in an embayment is one of the most 
important hydraulic phenomena in the river engineering 
practice. Due to the complex flow structure, the balance 
of the sediment transport is broken. It results in a great 
number of problems, for instance, the local scouring, the 
change of environmental parameters, etc. By using two 
LDAs (Laser Doppler anemometers) and an EMC 
(Electromagnetic current meter), Muto et al. (2000) 
experimentally investigated the flow exchanges between 
the main channel and an embayment area. In this section, 
the methodology is applied to one of this kind of flows 
and the result is compared with the measurements. 

 
Fig.7 Top view of the experimental setup 

 
The laboratory flume consists of a main channel 

which has a width B=16.0cm and a flood plain with a 
width b=16.0cm. Part of the flood plain is removed 
where forms an embayment with a length L=16.0cm. 
The experiment set up is shown in Fig. 7. And the 
experiment conditions are summarized in Table 2. 

 
In the computation, the inlet boundary is set at the 

distance of about 10b from the upstream of the 
embayment and the outlet is 20b from the downstream of 
the embayment. This distance seems long enough and 
may diminish the effect of the inlet and outlet boundaries. 
The inlet flow is assumed to have a logarithmic velocity 

profile in the vertical direction. At the beginning of the 
calculation, this velocity profile is applied to the whole 
domain. 

Two kinds of meshing strategies have been tested 
with a non-linear k-ε model under the same initial and 
boundary conditions. The mesh system near the 
embayment in either case is shown in Fig. 8 and Fig. 9, 
respectively.  

Around the embayment, the mesh is clustered for a 
better resolution, and away from the embayment, the 
mesh is relatively coarse to save computational time. The 
hybrid mesh consists of both hexahedra and prisms 
having a total mesh number of 13,086. And the 
hexahedral mesh is a bit finer with a total number of 
19,683. 

 
Fig.8 Hybrid mesh 

 
Fig.9 Hexahedral mesh 

 
The longitudinal velocity and the horizontal vortex at 

half water depth are shown in Fig. 10 and Fig. 11, 
respectively. 

Both the hybrid mesh and the hexahedral mesh work 
well in this test case. The flow pattern in the embayment 
has been reproduced with a reasonable accuracy. A large 

Table 2 Experiment conditions 

Discharge 
Q (l/s) 

Water 
depth 

H (cm) 

Friction 
velocity 
u*(cm/s) 

Reynolds 
number 

Froude
number

2.271 3.8 2.055 9,650 0.74 
 



circulating flow is induced in the embayment area as 
shown in Fig. 11. This circulation occupies almost the 
whole region of the embayment with a maximum 
velocity about a quarter of that in the main channel. At 
the center of the circulation, the flow is stagnant. 
Velocity gradients in the junction zone (i.e. the interface 
between the main channel and the embayment) are quite 
steep. Although there are some differences in the result 
due to the two different mesh systems, it is very difficult 
to distinguish the winner. 

 
7.3 Flow around spur dykes with local scour holes 

The final application is the prediction of the flow 
field around a series of impermeable spur dykes with 

          (a) Experiment result              (b) Hexahedral mesh result             (c) Hybrid mesh result 
Fig. 10 Comparison of the longitudinal velocity profile 
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          (a) Experiment result              (b) Hexahedral mesh result             (c) Hybrid mesh result 
Fig. 11 Comparison of the horizontal cross-sectional velocity profile (u, v) 
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local scour holes. Detailed measurements were reported 
by Khaleduzzaman (2004) and Zhang et al. (2005). The 
experiment is conducted in a straight tilting flume, which 
is 20m long, 0.99m wide and 0.3m deep. The initial 
riverbed was covered with 15cm-thick fine sediment. 
The sediment has a mean diameter of 196 mµ and a 
geometric standard deviation of 1.496. 

The experiment setup and the experiment conditions 
are given in Fig. 12 and Table 3, respectively. It satisfies 
the condition of clear-water scouring. The final riverbed 
topography after a continuous running of 893 hours is 
shown in Fig. 13. Severe local scour holes are observed 
at the toes of all the spur dykes. Around the first pair, all 
the sediment has been eroded. The main channel area has 

been significantly degraded, while along the channel 
bank, obvious deposition occurs. The 3D flow velocity in 
the equilibrium state is measured with an I-shape and an 
L-shape electromagnetic velocity meters under dynamic 
flow conditions. The average of 600 samples processed 
by a computerized data acquisition system at a frequency 
of 10Hz is taken as the time-averaged value of each 
measured quantity at each point. 

The flow calculation is based on the final riverbed 
with a k-ε turbulence model. A hexahedral mesh system 
with a total number of 31,808 is employed for the 
calculation. Considering the geometrical symmetry, only 
half of the flume is selected as the computational 
domain. 

Table 3 Experiment conditions 

Discharge 
Q (l/s) 

Mean velocity 
u (cm) 

Slope 
Ie  

Approach flow depth
H (cm) 

Shear velocity
u*(cm/s) 

Shear velocity 
ratio (u*/ u*c) 

Reynolds 
number 

Froude
number

10.52 18.98 1/3,000 5.60 1.35 0.915 10,682 0.26 

Fig. 13 Bed topography under equilibrium condition 
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Fig. 14 Stream-wise velocity profile (u, v) around the first five spur dykes at z=1.0cm 
(Experiment: top; Computation: bottom) 
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The stream-wise velocity profiles (u, v) around the 
first several spur dykes at two different layers (z=1.0cm 
and z=3.25cm) are shown in Fig. 14 and Fig. 15, 
respectively. 

Although the magnitude of the velocity vector in the 
two layers is different, the flow pattern shows some 
similarity. The velocity diverts at the heads of the spur 
dykes. In the main channel area, the velocity is 
intensified, and there is a significant velocity reduction 
in the embayment areas formed by the consecutive spur 
dykes. Take a look at the experimental data, one may 
find that there is a wake vortex in each embayment area. 
The center of the vortex is closer to the upstream spur 
dyke forming the embayment area. This phenomenon 
has been reasonably reproduced by the computation. 

A further inspection may lead to some more 
interesting discoveries. In the computational result, one 
may find a small eddy at the downstream corner of each 
embayment. These eddies are not found in the plot for 
the experimental data. This may be due to the shortage 
of enough measured data. If the data has been collected 
at more locations, the small eddies may be expected to 
appear. In fact, similar small eddies have been observed 
on the free surface during the surface flow visualization 
(Zhang et al., 2005). In the first embayment, the 
computed vortex system is a little different from the 
others, which coincides with the experiment 
measurements. The obvious 3D characteristics of the 
flow structure due to the local scour hole in this area 
may be responsible for this difference. As has 
mentioned before, the first spur dyke is surrounded by 

the deepest scour hole. It has a great effect on the flow 
field. 

In the junction zone, the measured velocity seems a 
bit larger than the computed one. This may be attributed 

Fig. 15 Stream-wise velocity profile (u, v) around the first five spur dykes at z=3.25cm 
(Experiment: top; Computation: bottom) 
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Fig. 16 Transverse velocity profile (v, w) at the head of the 
first spur dyke (Experiment: top; Computation: bottom) 



to the coarse mesh adopted in the test case. As the 
velocity gradient in this area is quite deep, a finer mesh 
may be suggested for a better resolution. 

A comparison of the transverse cross-sectional 
velocity profile (v, w) at the head of the first spur dyke 
(i.e. x=150.0cm) is depicted in Fig. 16 finally. This figure 
gives an intuitive image of the vertical flow pattern in the 
local scour hole. The basic aspects of the flow structure 
have been reasonably captured with the numerical 
simulation. The vertical velocity component w at the 
head of the spur dyke is quite large. A big anti-clockwise 
vortex occupies almost the whole scour area if one takes 
a look from the downstream. No wonder the sediment 
just in front of the spur dyke is completely eroded. 
 
8. Conclusions 
 

A 3D unstructured mesh based RANS solver using 
an FVM procedure has been presented in this paper. 
With a strict but simple data structure, the solver can take 
full advantages of arbitrary polyhedral mesh up to six 
faces. Special techniques distinguished from those of 
structured mesh methods have been accentuated 
including the discretization of the governing equations, 
the wall boundary treatments, etc. 

The solver has been incorporated into different kinds 
of turbulence models and applied to flows in different 
domains with different meshing strategies. The 
comparison of the computational result and the 
experimental data demonstrates that the solver is able to 
reproduce the selected flows with a reasonable accuracy. 
Furthermore, the stableness, effectiveness and simplicity 
of the solver are also observed during the model 
verification. It may be accounted as a promising solution 
for the turbulence modeling in hydraulic engineering 
practices. 

Nevertheless, some assumptions and simplifications 
have been introduced in the solver, which may become 
the bottleneck and limit the application of the proposed 
method. These include the omission of the water surface 
variation and the assumption made for the wall function 
approach. Moreover, higher order discretization schemes 
have been avoided in this study in order that the solver is 
as stable as possible. This may sometimes become the 
main error source for the simulation. All these problems 
should be taken into account in the future research. 
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要旨 

 本研究では，三次元非構造格子を用いたレイノルズ平均ナビエ・ストークス方程式の有限体積解法を示して

いる．異なる格子構造を結合することにより生じるコントロール・ボリュームにおける保存則の問題を，厳密

かつ有効なデータ構造とすることで解決する方法を示している．空間差分には指数法が，また時間差分には隠

的Crank-Nicolson法が用いられている．表面フラックスの計算にあたっては，チェッカーボード現象を避けるた

めにRhie-Chowによる補間法を用いている．系を構成する方程式群は，最終的にILUTP 法による前処理を伴っ

たGMRES法を用いて解かれている．本研究による方法を３種の室内実験流れに対して適用したところ，それら

の条件の異なるいずれに対してもほぼ満足な流況を再現することが示された． 
 
キーワード:  三次元，有限体積法，非構造格子， k ε− モテル 

 


